If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x+33=0
a = 2; b = 20; c = +33;
Δ = b2-4ac
Δ = 202-4·2·33
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{34}}{2*2}=\frac{-20-2\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{34}}{2*2}=\frac{-20+2\sqrt{34}}{4} $
| 3h-26=10 | | 4x—4=4(x-1) | | 3s+21=-21 | | 100=4x×x | | 3s-12=31 | | -0.9p=-1.7p | | -3g+11=-8g+51 | | 48+8x=7 | | 3/5z+5=20 | | -8x+3x=6 | | y/6-8=-15 | | 5/8.75=8/x | | 5/8.75=x/8 | | (2y-1/3)=-5 | | 5x-11=2x+20 | | 6x-5=8x-35=3x-1 | | 13-3/2x=24 | | 7x²=21 | | /6x+16-2x=28 | | 6+4m=5m | | 3(x-2)=32 | | 12x+15=12x-5 | | 5=x-9.1 | | 2/5x-4=-1 | | -14y=-42 | | (2×+18)(5x+1)=180 | | (-3y+3)^2=63 | | (5x-2)/4=7 | | -12d=-48 | | (-3y+3)=63 | | 3/4x+1/8=1/2x-1,5/16 | | -4u+7=-10u=37 |